Synthesis of Lactam and Ketone Precursors of 2,7-Substituted Octahydro-pyrrolo[1,2-a]pyrazines and Octahydro-2H-pyrido[1,2-a]pyrazines

Stefan Van den Branden, Frans Compernolle* and Georges J. Hoornaert
Laboratorium voor Organische Synthese, K. U. Leuven, Celestijnenlaan 200F, B-3001 Leuven-Heverlee, Belgium

Abstract

This report describes the synthesis of the hexahydropyrrolo [1,2-a] pyrazin-6(2H)-ones 6, the hexahydro-pyrrolo[1,2-a]pyrazin-7(6H)-ones 7, and the hexahydro-2H-pyrido[1,2-a]pyrazin-7-(6H)-ones 8, precursors of 2,7 -substituted octahydropyrrolo- and octahydro- $2 H$-pyrido[1,2-a]pyrazines. The synthetic sequence leading to the ketones 7 and 8 starts with the construction of the piperazine ring through intramolecular 1,4-addition of the unsaturated amino ester 18 or reductive cyclization of the amino keto ester 11. The resulting piperazin-2-yl-acetates 19 and -propanoates 12 are then subjected to alkylation with methyl bromoacetate, Dieckmann cyclization and acidic demethoxycarbonylation. Depending on the reaction conditions, ring closure of the piperazin-2-ylpropanoates 12 afforded the lactams 6 or the 8a-methoxy lactam 14.

The octahydropyrrolo $[1,2-a$]pyrazine and the octahydro- 2 H pyrido $[1,2-a]$ pyrazine structures 1 and $2,\left(R^{2}=H\right)$ form the basis of various compounds of pharmacological interest. ${ }^{1}$ The 2,7 -substituted analogues 1 and $2\left(R^{1}\right.$ and $R^{2}=$ appropriate pharmacophoric substituents) can be regarded as conformationally restricted forms of piperazine drugs such as flunarizine 3, fluanisone 4 and lidoflazine 5. Provided this restriction conforms to the 'active conformation' of the monocyclic drug compounds, it results in greater specificity of interaction with the complementary receptor site and hence more selectivity in its pharmacological activity.

1

2

5

3

4

$$
\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-\mathrm{p}
$$

thons, position 7 can be substituted by reaction with either nucleophiles (ketones 7,8) or electrophiles (lactam enolate of 6). The $\mathrm{N}-2$ substituents are introduced at the start of the synthetic sequence, e.g. aryl groups, or following N-debenzylation. The unsubstituted lactam structure $6\left(\mathrm{R}^{1}=\mathrm{H}\right)$ was mentioned in a recent patent. ${ }^{6}$

Results and Discussion

Bond fission analysis of the lactam 6 (Scheme 1) indicates a synthetic route consisting of a threefold substitution of a N -arylor N -benzyl-ethylenediamine with a five-carbon electrophilic reagent. In this respect, the α-chloro keto ester 9^{7} seems most appropriate since the differential reactivity of the three electrophilic centres permits the desired sequential order of substitution. In the nucleophilic diamine partner 10, this order of reactivity is matched by initial blocking of the primary amine as the N-trityl derivatives $\mathbf{1 0 a}, \mathrm{b}$ or the carbamate $\mathbf{1 0 c}$.

The N^{\prime}-protected diamine reagents $10 \mathrm{a}, \mathrm{b}$ were prepared by tritylation of N -benzyl- and N -(2-methoxyphenyl)-ethylenediamine. The latter precursor of $\mathbf{1 0 b}$ was derived from the HBr salt of bromoethylamine through chemoselective substitution with o-anisidine. As an alternative to salt formation, the amino group of bromoethylamine was blocked as the carbamate which, in turn, underwent ready substitution with o-anisidine to afford 10 c . As expected, attack of the free amino group of the diamine reagents 10a-c occurred regioselectively at the α-chloro position of 9 to give the keto esters 11a-c. The carbonyl absorptions in the IR spectra of 11a-c show them to be uniformly present as non cyclic ketones (as opposed to the cyclic hemiaminal forms of $11 \mathrm{a}, \mathrm{b}$).

Acid-promoted detritylation of 11a, then reductive cyclization with NaCNBH_{3} afforded the secondary amine 12a; this could

$9 \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$

6a, 12a; R1 $=$ Bzl
6b, 12b; $R^{1}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
10b, 11b; $R^{1}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, P=\mathrm{Tr}$
10c, 11c; $\mathrm{R}^{1}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{P}=\mathrm{CO}_{2} \mathrm{Bz}$
Scheme 1 Reagents and conditions: i, acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$; ii, MeOH HCl , reflux; iii, $\mathrm{NaCNBH}_{3}, \mathrm{MeOH}, \mathrm{pH} 5$; iv, $\mathrm{MeOH}-\mathrm{HOAc}, \mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$; $\mathrm{v}, \mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, reflux
be isolated as the free base or cyclized to the lactam 6a by further heating in basic medium. Under the same conditions (reflux with HCl in methanol), compound 11 b underwent acidic cleavage of both the trityl group and the 2-oxomethyl group. Probably, this result can be attributed to the good leaving group properties of the protonated aromatic amine. These properties are enhanced further by formation of a stable H -bond with the o-methoxy group and the relief of steric hindrance. Catalytic hydrogenation of the N-trityl compound 11b and the carbamate 11c effected both the desired deprotection and the reductive cyclization to give first the amino ester 12b and then, by further heating of the free base, lactam $\mathbf{6 b}$.
TLC analysis of the crude amino ester 12a revealed the presence of a less-polar side product, to which the bicyclic structure 14 with an angular 8a-methoxy group was attributed. Indeed, when after acid deprotection of 11 a addition of NaCNBH_{3} was omitted, the neutralized reaction mixture afforded 14 as the only reaction product (Scheme 2). Apparently, the amino ether 13 formed by solvent trapping of the intermediate iminium ion, cyclizes more readily than the reduced amine 12a. Reduction of the lactam 14 to 6 a required prolonged heating with NaCNBH_{3} in slightly acidic medium ($\mathrm{pH} 5-6$). The ability to transform 14 into the bicyclic acyliminium ion 15a or the tricyclic aziridinium ion 15b, and hence to introduce other angular substituents, was demonstrated by conversion of 14 into the 8a-hydroxy compound 16 on treatment with trifluoroacetic acid and alkaline work-up. The structure of 16 was confirmed by the great similarity of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra to those of the 8 a methoxy lactam 14. An attempt to introduce the 8a-cyano group with KCN in trifluoroacetic acid-dichloromethane led to a mixture of products. Besides the 8a-hydroxy compound 16, a small amount of a dehydrogenated cyano adduct ($\mathrm{M}^{+} 253$) was isolated.

The synthetic route to the ketone synthons 7 (Scheme 3) starts with an allylic substitution of methyl 4-bromobut-2-enoate 17 by the secondary amino group of the monoprotected ethylenediamines 10a,c. Subsequent 1,4 -addition of the other amino group on the α, β-unsaturated ester then proceeds either via acidic deprotection (18a $\longrightarrow \mathbf{1 9 a}$ for $\mathrm{P}=\mathrm{Tr}$) or via generation of the carbamate anion (18c $\longrightarrow \mathbf{2 1} \longrightarrow \mathbf{1 9 b}$ for $\mathrm{P}=\mathrm{CO}_{2} \mathrm{Bzl}$). $N-$ Alkylation of the resulting piperazin-2-ylacetates 19 leads to

Scheme 2
the diacetates $\mathbf{2 0}$ which eventually give the desired ketones 7 through Dieckmann cyclization and demethoxycarbonylation.

Reaction of amines $10 \mathrm{a}, \mathrm{c}$ with 17 to form 18a, c proceeded without difficulty. Acid deprotection of $\mathbf{1 8 a}$ and neutralization afforded piperazin-2-ylacetate 19a in 85% yield. For the preparation of the analogous compound 19b, 1,4-addition producing the cyclic carbamate 21 had to precede hydrogenolytic deprotection. Brief treatment of the carbamate 18c with KOBu^{t} in toluene afforded 21 in good yield (85%). However, a more prolonged reaction with KOBu^{t} led to the corresponding pipera-zin-2-ylacetic acid 22.

Scheme 3 i , acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$; ii, $\mathrm{MeOH}-\mathrm{HCl}$, reflux, then aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$; iii, toluene, KOBu^{\prime}; iv, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$; v, acetone, $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{K}_{2} \mathrm{CO}_{3}$, KI ; vi, toluene, $\mathrm{KOBu}^{\prime}, 0^{\circ} \mathrm{C}$; vii, aq. HCl , reflux

Dieckmann cyclization of the diesters $\mathbf{2 0 a}, \mathbf{b}$, obtained from 19a,b by alkylation with methyl bromoacetate, could produce the regioisomeric ketoesters 23a,b and 24a,b. However, only the more stable keto esters 23a,b were detected and isolated (23a: $49 \%, \mathbf{2 3 b}: 35 \%$). If formed, the regioisomeric keto esters $\mathbf{2 4 a}, \mathrm{b}$ presumably decompose via the enol-enamine tautomer. The total yield of the conversion 20a,b $\longrightarrow \mathbf{7 a , b}$ was increased (57% for 7 a and 55% for 7 bb) when acidic hydrolysis of the keto esters was performed directly on the crude reaction product.
The 2-benzyl- and 2-(2-methoxyphenyl)-hexahydro-2 H pyrido $[1,2-a]$ pyrazin- $7(6 H)$-ones 8a,b have been described previously. ${ }^{5}$ An alternative synthesis (Scheme 4) takes advantage of the slow cyclization of the amino esters 12a,b. N -Alkylation of

$21: \mathrm{Ar}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}$ $22: \mathrm{Ar}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{H}$

23a: R=BzI
23b: $\mathrm{R}=\mathbf{2}-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

24a: R=Bzl
24b: $\mathrm{R}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

12a,b with methyl bromoacetate cleanly produced diesters 25a,b ($\mathbf{2 5 a}$: $\mathbf{7 2 \%}$, 25b: 76\%). However, Dieckmann cyclization of 25a,b required the use of strong bases (LDA or KH in THF). Probably this result is due to the decreased basicity of the α-protons of the 2 -propanoate ester side-chain compared to the 2 -acetate ester group of 17a,b. TLC analysis of the crude keto ester mixture obtained from 12a indicated the existence of a labile and a more stable keto ester (26a and 27a). Column chromatography of the keto esters gave rise to isolation of only the keto ester 27a in low yield. Acid hydrolysis was carried out on the crude keto ester mixture, affording the desired ketones $\mathbf{8 a}, \mathbf{b}$ identical with the compounds described previously ${ }^{5}$ (yield 8a: $\mathbf{4 3} \%$, 8 b : 33%).

12a, 25a, 26a, 27a, 8a : R = Bzl
12b, 25b, 26b, 27b, 8b : R = $2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
Scheme 4
The important features of the ${ }^{1} \mathrm{H}$ NMR spectra of lactams 6a,b, 8a-methoxylactam 14, ketones 7a,b and keto ester 23a are assembled in Table 1. For the ketone compounds 7a,b which have a tetrahedral $\mathrm{sp}^{3} \mathrm{~N}$, the coupling patterns are consistent with a trans-fused conformation B, in which all protons of the bicyclic system occupy either an axial or an equatorial position. Conformation B is supported by the values of the vicinal coupling constants ${ }^{3} J_{8 a x, 8 \mathrm{a}} 11 \mathrm{~Hz},{ }^{3} J_{8 e q, 8 \mathrm{a}} 5.5 \mathrm{~Hz}$ and ${ }^{3} J_{1 \mathrm{ax}, 8 \mathrm{ga}} 10$ (9.5) Hz for $7 \mathrm{a}, \mathrm{b}$ and the value ${ }^{3} J_{1 \mathrm{eq}, 8 \mathrm{a}} 2 \mathrm{~Hz}$ for 7 b . In contrast, due to the trigonal geometry of the $\mathbf{s p}^{2} \mathrm{~N}$, lactams $\mathbf{6 a , b}$ adopt conformation \mathbf{A}, in which the piperazine ring forms a chair and the pyrrolidinone ring is nearly planar. The chair form of the piperazine ring is shown by the coupling constant values ${ }^{3} J_{1 \mathrm{ax}, \mathrm{Ba}}$ 11 Hz and ${ }^{3} J_{1 \mathrm{eq}, 8 \mathrm{a}} 3$ (2) Hz . The intermediate and similar values found for protons $7-\mathrm{H}, 8-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}\left({ }^{3} J_{7,8} 9,9,7,5 \mathrm{~Hz} ;{ }^{3} J_{8,8 \mathrm{a}} 7\right.$, 6 Hz) confirm the nearly planar geometry of the lactam ring that is suggested by inspection of molecular models. In compound 14, C-8 is pushed slightly down this plane by interaction with the 8 a -methoxy group, resulting in a shift of the coupling constants to both higher and lower values (${ }^{3} J_{7.8} 10,8.5,10,3.5$ Hz).
The bicyclic structure of lactams 6a,b, 14 and $\mathbf{1 6}$, ketones $\mathbf{7 a , b}$ and the keto ester 23a is confirmed by the ${ }^{13} \mathrm{C}$ NMR spectra (see

Experimental section). In addition, the chemical shift values reveal the location of the 8a-methoxy group in 14 and of the ester group at $\mathrm{C}-8$ in the keto ester 25a.

A
$R^{1}=\mathrm{Bzl}$ or $2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ $\mathrm{R}^{2}=\mathrm{H}$ or MeO

B
$\mathrm{R}^{1}=\mathrm{Bzl}$ or ${ }^{2}-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ $\mathrm{R}^{3}=\mathrm{H}$ or $\mathrm{CO}_{2} \mathrm{Me}$

The lactam and ketone precursors described in the present work provide a general route to the 2,7 -substituted target compounds 1 and 2, the bicyclic analogues of 1,4 -substituted piperazine drugs. The enolate anions of lactams $\mathbf{6 a , b}$ can be substituted with either the final group or with an auxiliary group $\mathrm{X}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{CO}_{2} \mathrm{R}, \mathrm{SPh}\right)$ which, in turn, can be transformed to the final substituent. The introduction of the auxiliary group allows for radical reactions (SPh), reactions with electrophiles $\left(\mathrm{CO}_{2} \mathrm{R}\right)$ or reactions with nucleophilic reagents analogous to those used for the 7 -ketones 7a,b and 8a,b $\left(\mathrm{Cl}, \mathrm{Br}, \mathrm{CO}_{2} \mathrm{R}\right)$. Finally, generation of the acyliminium or aziridinium ion from the α-methoxy lactam 14 could serve as a tool for introduction of angular 8a-substituents.

Experimental

All m.p.s are uncorrected. IR spectra were recorded as thin films between NaCl plates or as solids in KBr pellets on a PerkinElmer 297 grating IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WM 250 instrument operating at 250 MHz for ${ }^{1} \mathrm{H}$ and 63 MHz for ${ }^{13} \mathrm{C}$ measurements. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm relative to tetramethylsilane as an internal reference. J values are recorded in Hz . Mass spectra were run on a Kratos MS50 instrument and DS90 data system; the ion source temperature was $150-250^{\circ} \mathrm{C}$ as required. Exact mass measurements were performed at a resolution of 10000 . Analytical and preparative thin layer chromatography was performed using Merck silica gel 60 PF-224 or neutral aluminum oxide 60 F-254. Column chromatography was carried out using 70-230 mesh silica gel 60 (E.M. Merck) or 100-125 mesh neutral aluminum oxide (Brockmann activity 4) (Fluka).

N-(2-Methoxyphenyl)ethane-1,2-diamine.-A stirred mixture of 2-methoxybenzenamine ($18 \mathrm{~cm}^{3}, 0.16 \mathrm{~mol}$) and bromoethylammonium bromide ($32.70 \mathrm{~g}, 0.16 \mathrm{~mol}$) in toluene ($200 \mathrm{~cm}^{3}$) was refuxed for 5 h under an atmosphere of nitrogen. The toluene layer was separated and discarded. The salt phase was dissolved in water ($160 \mathrm{~cm}^{3}$), made alkaline with saturated aqueous KOH ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 1 \mathrm{dm}^{3}$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were evaporated and the residue was purified by vacuum distillation ($150^{\circ} \mathrm{C} / 6 \mathrm{~mm} \mathrm{Hg}$) to give the title compound ($19 \mathrm{~g}, 71 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420(\mathrm{NH}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.47\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 2.73(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 2.98$ (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}$), $3.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and 6.52-7.11 $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

N -Benzyl- N^{\prime} (triphenylmethy)ethane-1,2-diamine 10a.-To a cooled $\left(0^{\circ} \mathrm{C}\right)$ and stirred solution of N -benzylethane-1,2diamine ${ }^{8}(32 \mathrm{~g}, 0.213 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(16 \mathrm{~g}, 0.158 \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of triphenylmethyl chloride ($60 \mathrm{~g}, 0.214 \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$. The mixture then was allowed to come to room temp. for 1 h . The $\mathrm{Et}_{3} \mathrm{~N}^{+} \mathrm{HCl}^{-}$was filtered off, the filtrate was evaporated and the residue was chromatographed on a silica column (EtOAc) to

Table $1{ }^{1}$ H NMR spectra of the lactams $\mathbf{6 a}$ and $\mathbf{6 b}$, the methoxy lactam 14, ketones 7a and 7b, and the keto ester 23a ${ }^{\mathbf{a}-9}$

	6 a	6b	14	7a	7b	23a
$1_{a x}-\mathrm{H}$	1.71 (t)	2.35 (t)	1.95 (d)	2.04 (t)	2.68 (dd)	2.18 (dd)
	$11^{\text {b.c }}$	$11^{\text {b.c }}$	$11.5{ }^{\text {b }}$	$10^{\text {b.c }}$	$10.5{ }^{\text {b }} 9.5{ }^{\text {c }}$	$10.5{ }^{\text {b }} 9.5{ }^{\text {c }}$
$1_{\text {eq }}-\mathrm{H}$	2.92 (m)	$3.59 \text { (dt) }$	$3.17 \text { (dd) }$	2.99 (m)	3.60 (dt)	2.82 (m)
		$11,{ }^{b} 2,{ }^{d} 2^{f}$	$11.5,{ }^{b} 1.5^{f}$	2.99 (m)	10.5, ${ }^{\text {b }} 2{ }^{\text {d }} 2^{\text {f }}$	2.82 (m)
$3_{\mathrm{ax}}-\mathrm{H}$	1.96 (td)	2.58 (td)	2.05 (td)	2.37 (td)	2.97 (td)	2.34 (ddd)
	11, b.c $3^{\text {d }}$	$11 .{ }^{\text {b.c }} 3^{\text {d }}$	11.5 , ${ }^{\text {b.c }} 4^{\text {d }}$	$11 .{ }^{\text {b.c }} 2.5{ }^{\text {d }}$	$11 .{ }^{\text {b.c }} 3^{\text {d }}$	$11 .{ }^{\text {c }} 10.5,{ }^{\text {b }} 2.5{ }^{\text {d }}$
$3_{\text {eq }}-\mathrm{H}$	2.85 (m)	3.42 (dm)	2.89 (dm)	2.87 (dm)	3.48 (dm)	2.97 (dt)
		$11^{\text {b }}$	$11.5{ }^{\text {b }}$	$11^{\text {b }}$	$11^{\text {b }}$	$10.5{ }^{\text {b }} 2^{\text {d.e }}$
$4_{\text {ax }}-\mathrm{H}$	2.84 (m)	3.11 (td)	3.03 (dddd)	2.50 (td)	2.74 (td)	2.51 (td)
		12.5 , ${ }^{\text {b.c }} 3^{\text {d }}$	$13,{ }^{\text {b }} 11.5{ }^{\text {c }} 3.5,{ }^{\text {d }} 1.5{ }^{\text {g }}$	$11,{ }^{\text {b.c }} 2.5^{\text {d }}$	$11,{ }^{\text {b.c }} 2,5^{\text {d }}$	$11,{ }^{\text {b.c. }} 2^{\text {d }}$
$4_{\text {eq }}-\mathrm{H}$	$3.96 \text { (dm) }$	$4.11 \text { (ddd) }$	3.92 (ddd)	2.99 (dm)	3.09 (ddd)	3.07 (dm)
	12.5^{b}	$10.5,{ }^{\text {b }} 3,{ }^{\text {d }}{ }^{e}$	$13,{ }^{\text {b }} 4{ }^{\text {d }} 1.5{ }^{\text {e }}$	$11^{\text {b }}$	$11,{ }^{\text {b }} 3,{ }^{\text {d }} 2^{e}$	$11^{\text {b }}$
$6_{\mathrm{ax}}-\mathrm{H}$				$2.69 \text { (d) }$	$2.78 \text { (d) }$	
				$16.5^{\text {b }}$	16^{b}	16.5^{b}
$6_{\text {eq }}-\mathrm{H}$				$3.41 \text { (d) }$	$3.43 \text { (d) }$	
				$16.5{ }^{\text {b }}$	16^{b}	16.5^{b}
7-H	2.34 (m)	2.44 (m)	2.36 (ddd)			
			17, ${ }^{\text {b }} 10,3.5$			
7-H	2.34 (m)	2.44 (m)	2.53 (dddd)			
			$17,{ }^{\text {b }} 10,8.5,1.5^{9}$			
$8 \mathrm{ax}-\mathrm{H}^{h}$	1.52 (dtd)	1.65 (dtd)	1.82 (ddd)	2.09 (dd)	2.18 (dd)	3.14 (m)
	12, ${ }^{\text {a }} 9,9,6$	12, ${ }^{\text {a }} 9,9,6$	14.5, ${ }^{\text {b }} 10,8.5$	$17,{ }^{\text {b }} 11^{\text {c }}$	17, ${ }^{11^{\text {c }}}$	
$8_{\text {eq }}-\mathrm{H}^{h}$	2.02 (dtd)	2.22 (dtd)	2.13 (ddd)	2.27 (dd)	2.37 (dd)	
	12,b $7,7,5$	12,b, 7, 7, 5	14.5, ${ }^{\text {b }} 10,3.5$	$17{ }^{\text {b }} 5.5{ }^{\text {d }}$	17, $5.5{ }^{\text {d }}$	
$8 \mathrm{a}-\mathrm{H}$	$\begin{aligned} & 3.60(\text { dddd }) \\ & 11,,^{c} 7,6,3^{d} \end{aligned}$	3.87 (m)		2.72 (m)	2.97 (m)	3.14 (m)

${ }^{9} 5 \mathrm{~J}$; ${ }^{\text {n }}$ The denomination $8_{\mathrm{ax}}-\mathrm{H}$ and $8_{\mathrm{eq}}-\mathrm{H}$ does not apply to lactams $\mathbf{6 a}, \mathbf{6 b}$ and 14.
give 10a as a solid ($69 \mathrm{~g}, 83 \%$), m.p. $85^{\circ} \mathrm{C}$ (EtOAc); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.7(2 \mathrm{H}$, br s, $\mathrm{NH}), 2.4-2.9\left(4 \mathrm{H}, 2 \times \mathrm{t}, J 5, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.0-7.7(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 393(\mathrm{MH})^{+}, 392(\mathrm{M})^{+}, 315(\mathrm{M}-\mathrm{Ph})^{+}$, 243 (Tr) ${ }^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 392.2190. $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2}$ requires $M, 392.2251$).

N -(2-Methoxyphenyl)- N^{\prime}-(triphenylmethyl)ethane-1,2diamine $\mathbf{1 0 b}$--To a stirred solution of N-(2-methoxyphenyl)-ethane-1,2-diamine $(11.60 \mathrm{~g}, 70 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(7.06 \mathrm{~g}, 70$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(500 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of triphenylmethyl chloride ($21.5 \mathrm{~g}, 77 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an atmosphere of nitrogen. The mixture was stirred for 16 h at room temp. and then worked up as described for 10 a . Chromatography of the residue on silica $\left(\mathrm{CHCl}_{3}\right)$ afforded $\mathbf{1 0 b}$ $(24.85 \mathrm{~g}, 87 \%)$ as a solid, m.p. $119^{\circ} \mathrm{C}$ (EtOAc); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3460 and $3310(\mathrm{NH})$ and 1450 and $1360\left(\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; CDCl_{3}) $1.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.44\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{NHTr}\right), 3.24$ (2 $\left.\mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{NHPh}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 6.59 (1 H, dd, J7.5, 1.5, $6^{\prime}-\mathrm{H}$ of Ph), 6.65 ($1 \mathrm{H}, \mathrm{td}, J 7.5,1.5,4^{\prime}-\mathrm{H}$ of Ph$), 6.76\left(1 \mathrm{H}, \mathrm{dd}, J 7.5,1.5,3^{\prime}-\mathrm{H}\right.$ of Ph$), 6.84(1 \mathrm{H}, \mathrm{td}, J 7.5$, $1.5,5^{\prime}-\mathrm{H}$ of Ph), 7.15 ($3 \mathrm{H}, \mathrm{tt}, J 7,1.5, p-\mathrm{H} \mathrm{Tr}$), 7.22 ($6 \mathrm{H}, \mathrm{td}, J 7$, $1.5, m-\mathrm{H} \mathrm{Tr})$ and $7.47(6 \mathrm{H}, \mathrm{dt}, J 7,1.5, o-\mathrm{H} \mathrm{Tr}) ; m / z 408(\mathrm{M})^{+}$, $243(\mathrm{Tr})^{+}$(Found: $\mathrm{M}^{+}, 408.2200 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ requires M, 408.2208).

N -(Benzyloxycarbonyl)- N^{\prime}-(2-methoxyphenyl)ethane-1,2diamine 10 c .- A mixture of N -(benzyloxycarbonyl)-2-bromoethanamine ${ }^{9}(15.0 \mathrm{~g}, 0.06 \mathrm{~mol})$ and 2-methoxyaniline $(28.7 \mathrm{~g}$, 0.30 mol) in toluene ($250 \mathrm{~cm}^{3}$) was refluxed for 6 h under N_{2}. It was then washed with $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}\right)$ and made alkaline with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying over MgSO_{4} and evaporation gave a residue which was purified by column chromatography (silica, 6:94 $\mathrm{EtOAc}-\mathrm{CHCl}_{3}$) to give $10 \mathrm{c}(14.9 \mathrm{~g}, 75 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 2820\left(\mathrm{NCH}_{2}\right)$ and $1700\left(\mathrm{NCO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.7(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.4(4$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.3(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.3(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 6.8\left(4 \mathrm{H}, \mathrm{MeOC}_{6} \mathrm{H}_{4}\right.$ and $7.5\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; \mathrm{m} / z$
$300(\mathrm{M})^{+}$and $136\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}=\mathrm{CH}_{2}\right)^{+}$(Found: M^{+}, 300.1462. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 300.1474$).

Methyl 5-\{N-Benzyl-N-[2-(triphenylmethylamino)ethyl] amino \}-4-oxopentanoate 11a.-To a stirred mixture of 10a (9.5 $\mathrm{g}, 24 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.0 \mathrm{~g}, 51 \mathrm{mmol})$ and $\mathrm{KI}(4.0 \mathrm{~g}, 24 \mathrm{mmol})$ in acetone ($200 \mathrm{~cm}^{3}$) was added $9(5.0 \mathrm{~g}, 30 \mathrm{mmol})$. After 3 h the mixture was worked up by addition of water and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure and the residue was purified over silica gel ($5: 95 \mathrm{EtOA} \mathrm{c}-\mathrm{CHCl}_{3}$) to give 11a as pale yellow crystals ($12 \mathrm{~g}, 95 \%$), m.p. $82^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320$ $(\mathrm{NH}), 1745\left(\mathrm{CO}_{2}\right)$ and $1715(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.20-$ $2.35\left(1 \mathrm{H}\right.$, br s, NH), $2.20-2.35\left(2 \mathrm{H}, \mathrm{t}, J 5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.52$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5, \mathrm{COCH}_{2}\right), 2.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.08$ (2 $\left.\mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $7.05-7.55(20 \mathrm{H}, \mathrm{m}, \mathrm{Tr}) ; m / z 520(\mathrm{M})^{+}, 443(\mathrm{M}-\mathrm{Ph})^{+}, 277$ $(\mathrm{M}-\mathrm{Tr})^{+}, 248(\mathrm{M}-\mathrm{TrNHCH})^{+}, 243(\mathrm{Tr})^{+}, 134[\mathrm{Bzl}(\mathrm{Me})-$ $\left.\mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 91\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$(Found: $\mathrm{M}^{+}, 520.2737 . \mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 520.2725$).

Methyl 5-\{N-(2-methoxyphenyl)-N-[2-(triphenylmethyl-

 amino)ethyl] amino \}-4-oxopentanoate 11b.-To a stirred mixture of $10 \mathrm{~b}(4.43 \mathrm{~g}, 10.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.00 \mathrm{~g}, 21.7 \mathrm{mmol})$ and KI $(1.80 \mathrm{~g}, 10.8 \mathrm{mmol})$ in acetone $\left(65 \mathrm{~cm}^{3}\right), 9(1.97 \mathrm{~g}, 12.0 \mathrm{mmol})$ was added dropwise. After being stirred under \mathbf{N}_{2} for 2 days, the mixture was worked up as described for 11a and the resulting product was chromatographed over silica gel (gradient elution, $1: 9$ to $3: 7 \mathrm{EtOAc}-\mathrm{CHCl}_{3}$) to give 11 b as crystals ($4.35 \mathrm{~g}, 78 \%$), m.p. $82-83{ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340$ (NH), $1740\left(\mathrm{CO}_{2}\right)$ and $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NH}), 2.09-2.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NHTr}\right), 2.41-2.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CO}_{2}$), 2.65-2.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}$), $3.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}\right)$, $3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.74(2 \mathrm{H}$, s, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 6.69-6.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ and $7.10-7.49(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Tr}) ; m / z 536(\mathrm{M})^{+}, 459(\mathrm{M}-\mathrm{Ph})^{+}, 293(\mathrm{M}-\mathrm{Tr})^{+}, 264$ $\left(\mathrm{CH}_{2}=\mathrm{NHTr}\right)^{+}$and $243(\mathrm{Tr})^{+}$(Found: M^{+}, 536.2663. $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M, 536.2673$).Methyl 5-\{N-(2-methoxyphenyl)-N-[2-(benzyloxycarbonylamino) ethyl $]$ amino $\}-4$-oxopentanoate 11 c .-To a mixture of 10 c $(2.00 \mathrm{~g}, 7 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.92 \mathrm{~g}, 7 \mathrm{mmol})$ and KI $(1.11 \mathrm{~g}, 7$ mmol) in acetone ($50 \mathrm{~cm}^{3}$), $9(2.19 \mathrm{~g}, 13 \mathrm{mmol})$ was added dropwise. After the mixture had been stirred at room temp. under N_{2} for 7 days, the solvent was evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Column chromatography of the residue on a silica column ($15: 85 \mathrm{EtOAc}^{2} \mathrm{CHCl}_{3}$) afforded 11 c as an oil $(2.22 \mathrm{~g}, 78 \%)$; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3320(\mathrm{NH}), 2820\left(\mathrm{NCH}_{2}\right)$ and $1720\left(\mathrm{CO}, \mathrm{CO}_{2}\right.$, $\left.\mathrm{NCO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, 3.1 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right.$), $3.6(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$), $3.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CO}\right.$), $4.9\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.1(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 6.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ and $7.2\left(5 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z$ $428(\mathrm{M})^{+}, 410\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 397(\mathrm{M}-\mathrm{OMe})^{+}, 313$ $\left(\mathrm{M}-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 264\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Bzl}\right)^{+}$, $205(313-\mathrm{BzlOH})$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: $\mathrm{M}^{+}, 428.1963$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M, 428.1947$).

Methyl 4-Benzylpiperazin-2-ylpropionate 12a.-Compound 11a ($5.35 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{HCl}-\mathrm{MeOH}(2 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 30 \mathrm{~cm}^{3}$). After being heated under reflux for 1 h the reaction mixture was evaporated and the residue was treated with methanol ($50 \mathrm{~cm}^{3}$). $\mathrm{NaCNBH}_{3}(1.29 \mathrm{~g}, 21 \mathrm{mmol})$ was added to the filtered solution (removal of TrOMe) after which the mixture was brought to pH 6 with $\mathrm{HCl}-\mathrm{MeOH}$ and refluxed for 1 h . After neutralization with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude polar amine 12a (TLC, alumina, 6:94 $\mathrm{MeOH}-\mathrm{CHCl}_{3}, R_{\mathrm{f}} 0.15$); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3600-3000(\mathrm{NH}), 3090,3060$ and $3030(\mathrm{ArH})$, $2950\left(\mathrm{CH}_{2}\right), 2810\left(\mathrm{NCH}_{2}\right), 1740\left(\mathrm{CO}_{2}\right)$ and 750 and 700 (ArH); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40-3.00\left(12 \mathrm{H}, \mathrm{m}, \mathrm{NH}, \mathrm{CH}_{2}\right), 3.47$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $7.33(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}) ; m / z 262(\mathrm{M})^{+}, 231(\mathrm{M}-\mathrm{OMe})^{+}, 230(\mathrm{M}-\mathrm{MeOH})^{+}$, $171(\mathrm{M}-\mathrm{Bzl})^{+}, 146\left[\mathrm{Bzl}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 139(171-$ $\mathrm{MeOH}), 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$.

Methyl 4-(2-Methoxyphenyl)piperazin-2-ylpropionate 12b.(a) A solution of $11 \mathrm{c}(3.2 \mathrm{~g}, 7.5 \mathrm{mmol})$ in methanol-acetic acid ($1: 1 ; 35 \mathrm{~cm}^{3}$) was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(0.6 \mathrm{~g})$ under a hydrogen pressure of 3 atm (Parr apparatus) for 16 h . The catalyst was filtered off and washed with methanol. The solvent was partially evaporated and the resulting solution ($\mathrm{ca} .5 \mathrm{~cm}^{3}$) was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to afford crude 12b, which was used directly in the next step (TLC silica, 1:4 MeOH-EtOAc, $R_{\mathrm{f}}=0.17$).
(b) A solution of $11 \mathrm{~b}(3.08 \mathrm{~g}, 5.74 \mathrm{mmol})$ was hydrogenated in the same way and equally gave $\mathbf{1 2 b}$.

2-Benzylhexahydro-8a-methoxypyrrolo[1,2-a $]$ pyrazin$6(2 \mathrm{H})$-one 14 .-A solution of $11 \mathrm{a}(4.38 \mathrm{~g}, 8 \mathrm{mmol})$ in $\mathrm{HCl}-$ $\mathrm{MeOH}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 25 \mathrm{~cm}^{3}\right.$) was refluxed for 1 h . The mixture was evaporated and the residue dissolved in methanol $\left(25 \mathrm{~cm}^{3}\right)$. The solid material $\left(\mathrm{TrOCH}_{3}\right)$ was filtered off and the filtrate was brought to pH 6 with $\mathrm{K}_{2} \mathrm{CO}_{3}$. After being refluxed for 30 min . and stirred at room temp. for 16 h , the solution was made alkaline with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue was purified over silica gel ($2: 98, \mathrm{MeOH}-\mathrm{CHCl}_{3}$) to afford $14(1.44 \mathrm{~g}, 65 \%)$ as an oil; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090,3070$ and $3030(\mathrm{ArH}), 2940\left(\mathrm{CH}_{2}\right), 2820,2770\left(\mathrm{NCH}_{2}, \mathrm{OCH}_{3}\right), 1690$ (NCO), 1600, 1585 and $1495(\mathrm{ArH})$ and 730 and $700(\mathrm{ArH})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.57,3.77(2 \mathrm{H}, \mathrm{d}, J$ 13.5, $\mathrm{NCH}_{2} \mathrm{Ph}$), $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.1$ (C-8), 29.4 (C-7), 36.3 (C-4), 49.0
$\left(\mathrm{CH}_{3} \mathrm{O}\right), 51.1(\mathrm{C}-3), 61.5(\mathrm{C}-1), 62.2\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 90.3(\mathrm{C}-8 \mathrm{a})$, 127.0 (C-p), 128.0 (C-o), 128.9 (C-m), 136.4 (C-i) and 172.6 (NCO); m/z $260(\mathrm{M})^{+}, 245(\mathrm{M}-\mathrm{Me})^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$ (Found: $\mathrm{M}^{+}, \mathbf{2 6 0 . 1 5 1 8} . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 260.1525$).

2-Benzylhexahydro-8a-hydroxypyrrolo [1,2-a]pyrazin-6(2H)one 16.-The methoxy lactam $14(200 \mathrm{mg}, 0.8 \mathrm{mmol})$ was dissolved in trifluoroacetic acid ($5 \mathrm{~cm}^{3}$) and the solution stirred for 15 min at room temp. It was then evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried (MgSO_{4}) and evaporated and the residue was purified over silica gel (6:94, $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) to give 16 as an oil $\left(157 \mathrm{mg}, 83 \% ; v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH}), 3090,3070\right.$ and $3040(\mathrm{ArH}), 2950\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right), 1680(\mathrm{NCO})$ and 730 and $700(\mathrm{ArH}) ; \delta\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.90(1 \mathrm{H}$, ddd, $J 18,10,8$, $\left.8_{\mathrm{ax}}-\mathrm{H}\right), 2.09\left(1 \mathrm{H}, \mathrm{d}, J 11,1_{\mathrm{ax}}-\mathrm{H}\right), 2.02-2.17\left(2 \mathrm{H}, \mathrm{m}, 3_{\mathrm{ax}}-\mathrm{H}, 8_{\mathrm{eq}}-\mathrm{H}\right)$, 2.30 (1 H , ddd, $J 16.5,10,3.5,7_{\mathrm{ax}}-\mathrm{H}$), 2.58 (1 H , ddd, $J 16.5,8,7$, $\left.7_{\mathrm{eq}}-\mathrm{H}\right), 2.88\left(1 \mathrm{H}, \mathrm{d}, J 11.5,3_{\mathrm{eq}}-\mathrm{H}\right), 2.97\left(1 \mathrm{H}, \mathrm{dd}, J 11,1.5,1_{\mathrm{eq}}-\mathrm{H}\right)$, 3.07 ($1 \mathrm{H}, \mathrm{td}, J 13,4,4_{\mathrm{ax}}-\mathrm{H}$), 3.56, $3.62\left(2 \mathrm{H}, \mathrm{d}, J 14, \mathrm{NCH}_{2} \mathrm{Ph}\right)$, $3.83\left(1 \mathrm{H}, \mathrm{dd}, J 13,2,4_{\mathrm{eq}}-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $7.30(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.9(\mathrm{C}-8), 29.2(\mathrm{C}-7), 36.1(\mathrm{C}-4), 51.4$ (C-3), 62.0, 63.0 ($\mathrm{NCH}_{2} \mathrm{Ph}, \mathrm{C}-1$), 86.2 ($8 \mathrm{a}-\mathrm{C}$), 127.3 (C-p), 128.2 (C-o), 128.7 (C-m), 136.7 (C-i), and $172.6(\mathrm{NCO}) ; \mathrm{m} / \mathrm{z} 246(\mathrm{M})^{+}$, $228\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 155(\mathrm{M}-\mathrm{Bzl})^{+}, 137\left(155-\mathrm{H}_{2} \mathrm{O}\right), 134$ $\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 246.1354. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 246.1368$).

2-Benzylhexahydropyrrolo[1,2-a]pyrazin-6(2H)-one 6a.-A solution of crude 12 a , prepared from $11 \mathrm{a}(5.35 \mathrm{~g}, 10 \mathrm{mmol})$, in saturated $\mathrm{K}_{2} \mathrm{CO}_{3}$-methanol was refluxed for 30 min and then evaporated under reduced pressure. The residue was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (silica, 3:97, $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) to give 6 a as an oil ($1.44 \mathrm{~g}, 61 \%$ from 11a); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090,3070$ and 3040 (ArH), $2940\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right), 1690(\mathrm{NCO})$ and 730 and 700 $(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.49$ and $3.57(2 \mathrm{H}, \mathrm{d}, J 14$, $\mathrm{NCH}_{2} \mathrm{Ph}$) and $7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\mathrm{c}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 21.5 (C-8), 29.6 (C-7), 38.9 (C-4), 51.3 (C-3), $55.0(\mathrm{C}-8 \mathrm{a}), 59.1$ (C-1), $62.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 126.6$ (C-p), 127.7 (C-o), $128.3(\mathrm{C}-m), 137.0(\mathrm{C}-i)$ and $172.3(\mathrm{NCO}) ; m / z 230(\mathrm{M})^{+}$, $215(\mathrm{M}-\mathrm{Me}]^{+}, 211(\mathrm{M}-\mathrm{CO}-\mathrm{H})^{+}, 197\left(215-\mathrm{H}_{2} \mathrm{O}\right), 187$ $(215-\mathrm{CO}), 153(\mathrm{M}-\mathrm{Ph})^{+}, 146\left[\mathrm{Bzl}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$, $139(\mathrm{M} \mathrm{-} \mathrm{Bzl})^{+}$and $134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$(Found: M^{+}, 230.1412. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} 0$ requires $M, 230.1419$).

Hexahydro-2-(2-methoxyphenyl)pyrrolo[1,2-a]pyrazin$6(2 \mathrm{H})$-one $\mathbf{6 b}$.-Crude 12 b , prepared from $11 \mathrm{c}(3.2 \mathrm{~g}, 7.5 \mathrm{mmol})$, was treated in the same manner as described for the conversion of 12a into 6a. Purification over silica gel (3:97, $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) afforded 6 b as an oil ($1.75 \mathrm{~g}, 95 \%$ from 11c); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ $2960\left(\mathrm{CH}_{2}\right), 2840\left(\mathrm{NCH}_{2}\right), 1680(\mathrm{CON}), 1590$ and $1500(\mathrm{ArH})$ and $750(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $6.18-7.10(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\mathrm{c}}(63$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 22.0 (C-8), 30.1 (C-7), 39.8 (C-4), 49.8 (C-3), 55.4, $55.6\left(\mathrm{C}-8 \mathrm{a}, \mathrm{CH}_{3} \mathrm{O}\right), 57.8(\mathrm{C}-1), 111.3,118.6,120.9,123.5(\mathrm{CH}$ of $\mathrm{Ph}), 140.6\left(\mathrm{C}-1^{\prime}\right.$ of Ph$), 152.1\left(\mathrm{C}-2^{\prime}\right.$ of Ph$)$ and 173.1 (NCO); $\boldsymbol{m} / \mathrm{z} 246$ $(\mathrm{M})^{+}, 203(\mathrm{M}-\mathrm{CO}-\mathrm{Me})^{+}, 162\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\right.$ $\left.\mathrm{CH}_{2}\right]^{+}, 149\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 135\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{~N}=\right.$ $\left.\mathrm{CH}_{2}\right)^{+}$and $120(135-\mathrm{Me})$ (Found: $\mathrm{M}^{+}, 246.1359 . \mathrm{C}_{14} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{2}$ requires $M, 246.1368$).

Methyl 4-\{ N -Benzyl-N-[2-(triphenylmethylamino)ethyl]-amino\}but-2-enoate 18a.-To a mixture of $10 \mathrm{a}(1.79 \mathrm{~g}, 4.6$ mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.26 \mathrm{~g}, 9.2 \mathrm{mmol})$ in acetone ($30 \mathrm{~cm}^{3}$) was added methyl 4-bromobut-2-enoate 17 (90% purity; $0.91 \mathrm{~g}, 4.6$ mmol) dissolved in acetone ($30 \mathrm{~cm}^{3}$). After being stirred at room temp. under N_{2} for 16 h , the solution was filtered and the solvent
removed under reduced pressure. The residue was purified by column chromatography (silica, 1:9 EtOAc-hexane) to give 18a as an oil $(1.61 \mathrm{~g}, 72 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3700-3100(\mathrm{NH}), 3080$, 3060 and $3030(\mathrm{ArH}), 2950\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right)$ and 1725 $\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.97(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.25$ and 2.57 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.93\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.40(2 \mathrm{H}, \mathrm{s}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11, \mathrm{CH}=\mathrm{CHCO}_{2}\right.$), $6.90\left(1 \mathrm{H}, \mathrm{dd}, J 11,4, \mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and $7.10-7.60(20 \mathrm{H}, \mathrm{m}, \mathrm{Tr}$, $\mathrm{Ph}) ; m / z 490(\mathrm{M})^{+}, 247(\mathrm{M}-\mathrm{Tr})^{+}, 243(\mathrm{Tr})^{+}, 218(\mathrm{M}-$ $\operatorname{TrNHCH})^{+}, 128\left(\mathrm{M}-\mathrm{TrN}=\mathrm{CH}_{2}-\mathrm{Bzl}\right)^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$ (Found: $\mathrm{M}^{+}, 490.2639 . \mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 490.2620$).

Methyl $4-\{\mathrm{N}-(2-M e t h o x y p h e n y l)-\mathrm{N}-[2-($ phenylmethoxycar-bonylamino)ethyl]amino\}but-2-enoate 18 c .-To a stirred mixture of $10 \mathrm{c}(2.00 \mathrm{~g}, 6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.95 \mathrm{~g}, 6 \mathrm{mmol})$ and KI $(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in acetone ($50 \mathrm{~cm}^{3}$) was added dropwise methyl 4-bromobut-2-enoate $17(2.45 \mathrm{~g}, 12 \mathrm{mmol})$ in acetone $\left(50 \mathrm{~cm}^{3}\right)$. The solution was stirred at room temp. under N_{2} for 2 days and was then worked up as described for the preparation of 18a. Purification by column chromatography (silica, 35:65 EtOAchexane) afforded 18 c as an oil ($2.22 \mathrm{~g}, 84 \%)$; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ $3380(\mathrm{NH}), 2820\left(\mathrm{NCH}_{2}\right), 1720\left(\mathrm{CO}_{2}, \mathrm{NCO}_{2}\right), 1660(\mathrm{C}=\mathrm{C})$ and $750(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.6$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.9\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 5.1$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.6(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.9(1 \mathrm{H}, \mathrm{d}, J 16$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2}\right), 6.9\left(5 \mathrm{H}, \mathrm{m}, \mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and $7.3(5$ $\mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z 398(\mathrm{M})^{+}, 365(\mathrm{M}-\mathrm{MeOH})^{+}, 307(\mathrm{M}-\mathrm{Bzl})^{+}$, $234\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Bzl}\right)^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 398.1832. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $M, 398.1842$).

Methyl 4-(2-Methoxyphenyl)-1-(phenylmethoxycarbonyl)-piperazin-2-ylacetate 21.-A mixture of $18 \mathrm{c}(1.08 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{KOBu}^{t}(0.61 \mathrm{~g}, 5.4 \mathrm{mmol})$ in dry toluene $\left(100 \mathrm{~cm}^{3}\right)$ was stirred at room temp. under an atmosphere of nitrogen. After 3 \min acetic acid-methanol $\left(1: 9 ; 25 \mathrm{~cm}^{3}\right)$ was added. The solution was washed with water and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution washed with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried (MgSO_{4}) and evaporated. The product was purified by column chromatography on silica gel ($5: 95, \mathrm{EtOAc}-\mathrm{CHCl}_{3}$) to afford 21 as an oil ($0.91 \mathrm{~g}, 85 \%$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1740\left(\mathrm{CO}_{2}\right)$ and $1700\left(\mathrm{NCO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.5\left(3 \mathrm{H}, \mathrm{m}, 5_{\mathrm{ax}}-\mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.3\left(4 \mathrm{H}, \mathrm{m}, 3_{\mathrm{ax}}-\mathrm{H}, 3_{\mathrm{eq}}-\mathrm{H}, 5_{\mathrm{eq}}-\mathrm{H}, 6_{\mathrm{ax}}-\mathrm{H}\right), 3.7$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.0\left(1 \mathrm{H}, \mathrm{m}, 6_{\mathrm{eq}}-\mathrm{H}\right), 4.7(1 \mathrm{H}$, $\left.\mathrm{m}, 2_{\mathrm{ax}}-\mathrm{H}\right), 5.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ and 7.4 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$); δ_{C} ($63 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $34.47\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right.$), 40.43 $(\mathrm{C}-6), 48.98(\mathrm{C}-2), 49.83(\mathrm{C}-5), 51.56\left(\mathrm{CH}_{3} \mathrm{OCO}\right), 54.16(\mathrm{C}-3)$, $55.22\left(\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right), 67.26\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 111.07,118.18,120.67$, $122.95\left(\mathrm{CH}\right.$ of $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right), 127.51,127.67,128.15(\mathrm{CH}$ of $\mathrm{CO}_{2} \mathrm{Ph}$), $136.36\left(\mathrm{C}-1^{\prime}\right.$ of $\left.\mathrm{CO}_{2} \mathrm{Ph}\right), 140.71\left(\mathrm{C}-1^{\prime}\right.$ of $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$, $152.04\left(\mathrm{C}-2^{\prime}\right.$ of $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right), 154.75\left(\mathrm{NCO}_{2}\right)$ and $171.66\left(\mathrm{CO}_{2}\right)$; $m / z 398(\mathrm{M})^{+}, 367(\mathrm{M}-\mathrm{OMe})^{+}, 339\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 325$ $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 263\left(\mathrm{M}-\mathrm{Bzl}-\mathrm{CO}_{2}\right)^{+}, 234$ (325Bzl) and $162\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$(Found: M^{+}, 398.1829. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $M, 398.1842$).

Methyl 4-Benzylpiperazin-2-ylacetate 19a.-Compound 18a (0.60 g . 1.2 mmol) was dissolved in $\mathrm{HCl}-\mathrm{MeOH}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 10\right.$ cm^{3}) and the solution refluxed for 10 min . After neutralization with saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extraction with CHCl_{3}, the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified over a silica column ($6: 94, \mathrm{MeOH}-\mathrm{CHCl}_{3}$) to give 19a as an oil ($0.26 \mathrm{~g}, 85 \%$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3700-3100(\mathrm{NH})$, 3080, 3060 and $3030(\mathrm{ArH}), 2950\left(\mathrm{CH}_{2}\right), 2810\left(\mathrm{NCH}_{2}\right), 1735$ $\left(\mathrm{CO}_{2}\right)$ and 740 and $700(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.84(1 \mathrm{H}$, dd, $J 11,9,3_{\mathrm{ax}}-\mathrm{H}$), 2.05-2.16 (1 H , ddd, $J 11,9,5,5_{\mathrm{ax}}-\mathrm{H}$), 2.36$2.39\left(3 \mathrm{H}, \mathrm{d}, \mathrm{s}, \mathrm{NH}, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.68-2.75\left(2 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 5_{\mathrm{eq}}-\mathrm{H}\right)$, 2.91-2.95 ($\left.2 \mathrm{H}, \mathrm{m}, 6_{\mathrm{ax}}-\mathrm{H}, 6_{\mathrm{eq}}-\mathrm{H}\right), 3.14-3.25\left(1 \mathrm{H}, \mathrm{m}, 2_{\mathrm{ax}}-\mathrm{H}\right), 3.50$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$;
$\delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 37.97\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 50.96,51.03(\mathrm{C}-2$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 44.80,52.98,58.38\left(\mathrm{CH}_{2}\right), 62.66\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 126.45$ (C-p), $127.64(\mathrm{C}-o), 128.43(\mathrm{C}-m), 137.59(\mathrm{C}-i)$ and $171.69\left(\mathrm{CO}_{2}\right) ;$ $m / z 248(\mathrm{M})^{+}, 217(\mathrm{M}-\mathrm{OMe})^{+}, 175\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}$, $146\left[\mathrm{Bzl}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and 91 $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 248.1523. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, 248.1525).

Methyl 4-(2-Methoxyphenyl)piperazin-2-ylacetate 19b.-A solution of $21(1.17 \mathrm{~g}, 2.9 \mathrm{mmol})$ in acetic acid ($50 \mathrm{~cm}^{3}$) was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(0.23 \mathrm{~g})$ at room temp. under a hydrogen pressure of 3 atm (Parr apparatus) for 16 h . The catalyst was filtered off and the solvent removed under reduced pressure. The residue was dissolved in water and the solution neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude compound 19b, which was used directly in the next step.

Dimethyl 4-Benzylpiperazine-1,2-diyldiacetate 20a.-To a stirred mixture of $19 \mathrm{a}(1.72 \mathrm{~g}, 6.9 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.90 \mathrm{~g}$, 13.8 mmol) in acetone ($100 \mathrm{~cm}^{3}$) was added dropwise methyl bromoacetate ($1.16 \mathrm{~g}, 7.6 \mathrm{mmol}$) in acetone ($50 \mathrm{~cm}^{3}$). The reaction was allowed to proceed at room temp. under N_{2} for 16 h . The solution was filtered and evaporated. The residue was purified over a silica column ($1: 3, \mathrm{EtOAc}-\mathrm{CHCl}_{3}$) to give 20a as an oil ($1.60 \mathrm{~g}, 72 \%$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3090,3070,3030(\mathrm{ArH})$, $2960\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right), 1755-1740\left(\mathrm{CO}_{2}\right)$ and 740 and 700 (ArH); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.27-2.78\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2}, 3-\mathrm{H}\right.$, $5-\mathrm{H}, 6-\mathrm{H}), 3.22$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.34 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CO}_{2}$), 3.43, 3.53 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$) and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 33.54$ $\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 51.40\left(2 \times \mathrm{CH}_{3} \mathrm{O}\right), 49.99,52.41,55.23\left(\mathrm{CH}_{2}\right)$, $55.44(\mathrm{C}-2), 57.20\left(\mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 62.44\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 126.80(\mathrm{C}-p)$, 127.95 (C-o), $128.74(\mathrm{C}-m), 137.81(\mathrm{C}-i), 170.74\left(\mathrm{CO}_{2}\right)$ and $172.31\left(\mathrm{CO}_{2}\right) ; m / z 320(\mathrm{M})^{+}, 261\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 247(\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}, \quad 156(247-\mathrm{Bzl}), 146 \quad\left[\mathrm{Bzl}_{(}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\right.$ $\left.\mathrm{CH}_{2}\right]^{+}, 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 320.1740. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M, 320.1736$).

Dimethyl 4-(2-Methoxyphenyl)piperazine-1,2-diyldiacetate
20b.-To a stirred mixture of crude $\mathbf{1 9 b}$ (2.9 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.60 \mathrm{~g}, 2.9 \mathrm{mmol}$) and KI ($0.73 \mathrm{~g}, 2.9 \mathrm{mmol}$) in acetone ($25 \mathrm{~cm}^{3}$) was added dropwise methyl bromoacetate ($0.67 \mathrm{~g}, 3.2 \mathrm{mmol}$) in acetone ($25 \mathrm{~cm}^{3}$). The reaction was allowed to proceed at room temp. for 6 h , after which the acetone was evaporated and the residue was distributed between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by column chromatography (silica, 1:4 EtOAcCHCl_{3}) to yield 20 b as an oil $(0.73 \mathrm{~g}, 76 \%) ; v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ $2840\left(\mathrm{NCH}_{2}\right)$ and 1760 and $1730\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.63\left(1 \mathrm{H}, \mathrm{dd}, J 15.5,4, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.82(1 \mathrm{H}, \mathrm{dd}, J 15.5,7.5$, $\mathrm{CHCH}_{2} \mathrm{CO}_{2}$), 2.84-2.92 ($2 \mathrm{H}, \mathrm{m}, 5_{\mathrm{ax}}-\mathrm{H}, 6_{\mathrm{ax}}-\mathrm{H}$), $2.93-3.01(1 \mathrm{H}$, $\left.\mathrm{m}, 5_{\mathrm{eq}}-\mathrm{H}\right), 3.02\left(1 \mathrm{H}, \mathrm{dd}, J 11.5,6.5,3_{\mathrm{ax}}-\mathrm{H}\right), 3.14-3.22(1 \mathrm{H}, \mathrm{dd}, J$ $\left.11.5,4.5,3_{\mathrm{eq}}-\mathrm{H}\right), 3.21-3.27(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.41(2 \mathrm{H}, \mathrm{s}$, $\mathrm{NCH}_{2} \mathrm{CO}_{2}$), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.89(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $6.81-7.00(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 32.81$ $\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 49.87,50.22,51.52,55.30,55.56\left(\mathrm{CH}_{2}\right), 51.59$, $55.17\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.71(\mathrm{C}-2), 111.27,118.26,120.89,122.82(\mathrm{CH}$ of Ph), $141.07\left(\mathrm{C}-1^{\prime}\right.$ of Ph) and $152.21\left(\mathrm{C}-2^{\prime}\right.$ of Ph$) ; m / z 336$ $(\mathrm{M})^{+}, 277\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 263\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}$and 150 $\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$(Found: M^{+}, 336.1672. $\mathrm{C}_{17} \mathrm{H}_{24}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{5}$ requires $M, 336.1685$).

Methyl 2-Benzyloctahydro-7-oxopyrrolo [1,2-a $]$ pyrazine-8carboxylate 23a.-To a suspension of $\mathrm{KOBu}^{2}(0.72 \mathrm{~g}, 6.4 \mathrm{mmol})$ in dry toluene ($25 \mathrm{~cm}^{3}$) was added slowly a mixture of 20 a (1.03 $\mathrm{g}, 3.2 \mathrm{mmol})$ in dry toluene $\left(75 \mathrm{~cm}^{3}\right)$. After being stirred at $0^{\circ} \mathrm{C}$ under N_{2} for 3 h , the mixture was poured into cold pH 7
phosphate buffer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated and the residue chromatographed (silica, 1:1 $\mathrm{EtOAc}-\mathrm{CHCl}_{3}$) to give $23 \mathrm{a}\left(0.454 \mathrm{~g}, 49 \%\right.$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ $2820\left(\mathrm{NCH}_{2}\right), 1770(\mathrm{CO}), 1735\left(\mathrm{CO}_{2}\right)$ and 755 and $700(\mathrm{ArH})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.44$ and $3.54\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.75$ ($\mathbf{3} \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$) and $7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\mathrm{H}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 50.7(\mathrm{C}-3), 51.8(\mathrm{C}-4), 52.9$ $\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.3(\mathrm{C}-1), 57.7(\mathrm{C}-8), 61.1(\mathrm{C}-6), 62.5(\mathrm{C}-8 \mathrm{a}$, $\mathrm{NCH}_{2} \mathrm{Ph}$), 127.1 ($\mathrm{C}-p$), $128.2(\mathrm{C}-o), 129.0(\mathrm{C}-m), 137.0(\mathrm{C}-i)$, $167.1\left(\mathrm{CO}_{2}\right)$ and 205.4(C-7); $m / z 288(\mathrm{M})^{+}, 229\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}$, $197(\mathrm{M}-\mathrm{Bzl})^{+}, 169(197-\mathrm{CO}), 151(197-\mathrm{MeOH}), 146$ $\left[\mathrm{Bzl}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 134 \quad\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and 91 $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: M^{+}, 288.1470. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M, 288.1474).

Methyl Octahydro-2-(2-methoxyphenyl)-7-oxopyrrolo[1,2-

 a]pyrazine-8-carboxylate 23b.-Compound 20b was treated in the same way as described for the preparation of 23a to give the β keto ester 23b $(35 \%) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2960\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right)$, $1770(\mathrm{CO}), 1730(\mathrm{COO})$ and $750(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 2.75 ($\left.1 \mathrm{H}, \mathrm{td}, J 10.5,2.5,4_{\mathrm{ax}}-\mathrm{H}\right), 2.87\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,8,1_{\mathrm{ax}}-\mathrm{H}\right), 2.98$ $\left(1 \mathrm{H}, \mathrm{td}, J 10.5,2.5,3_{\mathrm{ax}}-\mathrm{H}\right), 2.99\left(1 \mathrm{H}, \mathrm{d}, J 17,6_{\mathrm{ax}}-\mathrm{H}\right), 3.09(1 \mathrm{H}, \mathrm{dt}, J$ $\left.10.5,2.5,4_{\mathrm{eq}}-\mathrm{H}\right), 3.32\left(1 \mathrm{H}, \mathrm{d}, J 11,8_{\mathrm{ax}}-\mathrm{H}\right), 3.38(1 \mathrm{H}$, ddd, $J 11,8,2$, $\left.8_{\mathrm{a}}-\mathrm{H}\right), 3.55\left(1 \mathrm{H}, \mathrm{d}, J 17,6_{\mathrm{eq}}-\mathrm{H}\right), 3.49-3.58\left(1 \mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}\right), 3.58-$ $3.64\left(1 \mathrm{H}, \mathrm{dt}, J 10.5,2,1_{\mathrm{eq}}-\mathrm{H}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right)$ and $6.90(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 50.19(\mathrm{C}-3)$, $51.23(\mathrm{C}-4), 52.40\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.60(\mathrm{C}-1), 55.34\left(\mathrm{CH}_{3} \mathrm{O}\right), 57.07(\mathrm{C}-$ 8), $61.56(\mathrm{C}-6), 63.06(\mathrm{C}-8 \mathrm{a}), 111.45,118.64,120.93,123.30(\mathrm{CH}$ of $\mathrm{Ph}), 140.56\left(\mathrm{C}-1^{\prime}\right.$ of Ph$), 152.18\left(\mathrm{C}-2^{\prime}\right.$ of Ph$), 167.16\left(\mathrm{CO}_{2}\right)$ and $204.92(\mathrm{C}-7) ; m / z 304(\mathrm{M})^{+}, 273(\mathrm{M}-\mathrm{OMe})^{+}$and $245(\mathrm{M}-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)^{+}$(Found: $\mathrm{M}^{+}, 304.1418 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 304.1423).2-Benzylhexahydropyrrolo $[1,2-\mathrm{a}]$ pyrazin- $7(6 \mathrm{H})$-one 7a--To a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{KOBu}^{t}(2.05 \mathrm{~g}, 18.3$ mmol) in dry toluene ($50 \mathrm{~cm}^{3}$) was added slowly a solution of $20 \mathrm{a}(2.93 \mathrm{~g}, 9.2 \mathrm{mmol})$ in dry toluene ($100 \mathrm{~cm}^{3}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ under N_{2} for 3 h and then extracted with $\mathrm{HCl}(6$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 2 \times 25 \mathrm{~cm}^{3}$). The water layer was refluxed for 2 h , cooled, made alkaline with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was evaporated and the residue chromatographed over alumina ($1: 1$, EtOAc-hexane) to afford 7 a as an oil ($1.19 \mathrm{~g}, 57 \%$); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3015(\mathrm{ArH}), 2940$ $\left(\mathrm{CH}_{2}\right), 2810\left(\mathrm{NCH}_{2}\right), 1765(\mathrm{CO}), 1600,1580$ and $1495(\mathrm{ArH})$ and 745 and $700(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.53$ and $3.61(2$ $\left.\mathrm{H}, \mathrm{d}, J 8.5, \mathrm{NCH}_{2} \mathrm{Ph}\right)$ and $7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 41.7 (C-8), 51.1 (C-3), 52.2 (C4), 56.9 (C-1), 60.4 (C-8a), 61.6 (C-6), $62.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 127.1$ (Cp), 128.2 (C-o), $129.0(\mathrm{C}-m), 137.8(\mathrm{C}-i)$ and 212.2 (C-7); m/z 230 $(\mathrm{M})^{+}, 202(\mathrm{M}-\mathrm{CO}), 146\left[\mathrm{Bzl}\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 139$ $(\mathrm{M}-\mathrm{Bzl})^{+}, 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $111(139-\mathrm{CO})$ (Found: $\mathrm{M}^{+}, 230.1418 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $M, 230.1419$).

Hexahydro-2-(2-methoxyphenyl)pyrrolo[1,2-a]pyrazin-

 $7(6 \mathrm{H})$-one $\mathbf{7 b}$.-To a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $20 \mathrm{~b}(1$ $\mathrm{g}, 3 \mathrm{mmol}$) in dry toluene ($75 \mathrm{~cm}^{3}$) was added $\mathrm{KOBu}^{1}(0.67 \mathrm{~g}, 6$ mmol). After reaction at $0^{\circ} \mathrm{C}$ under N_{2} for 1 h , the mixture was extracted with $\mathrm{HCl}\left(6 \mathrm{~mol} \mathrm{dm}^{-3} ; 2 \times 25 \mathrm{~cm}^{3}\right)$. The water layer was refluxed for 3 h , cooled, made alkaline with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was evaporated and the residue purified over silica gel (EtOAc) to give $\mathbf{7 b}(0.50 \mathrm{~g}$, 55%) as an oil; $\nu_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2940\left(\mathrm{CH}_{2}\right), 2820\left(\mathrm{NCH}_{2}\right)$, $1760(\mathrm{CO}), 1500(\mathrm{ArH})$ and $750(\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $6.83-7.05(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (for the other values, see Table 1); $\delta_{\text {(}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 41.1$ (C-8), 49.8 (C-3), 51.0 (C-4), 54.3 (C-1), 60.2 (C-8a), 61.3 (C-6), 111.2, 118.4, 120.8, $123.0(\mathrm{CH}$ of Ph$), 140.7$ ($\mathrm{C}-1^{\prime}$ of Ph$), 152.0\left(\mathrm{C}-2^{\prime}\right.$ of Ph$)$ and 211.5 (C-7); m/z $246(\mathrm{M})^{+}, 218(\mathrm{M}-\mathrm{CO})^{+}, 217(218-\mathrm{H}), 215$$(\mathrm{M}-\mathrm{OMe})^{+}, 203\left(218-\mathrm{CH}_{3}\right), 162\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}=\mathrm{CH}\right)-\right.$ $\left.\mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $150\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$(Found: M^{+}, 246.1376. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 246.1368$).

Methyl 4-Benzyl-2-methoxycarbonylethylpiperazin-1-ylacetate 25a.-The crude product 12a, prepared from 11a ($2.5 \mathrm{~g}, 41$ mmol). was dissolved in acetone $\left(100 \mathrm{~cm}^{3}\right)$ and to this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 10.9 \mathrm{mmol})$, $\mathrm{KI}(1 \mathrm{~g}, 6.0 \mathrm{mmol})$ and methyl bromoacetate $(3.5 \mathrm{~g}, 24.6 \mathrm{mmol})$. The mixture was stirred under N_{2} for 16 h , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 300 \mathrm{~cm}^{3}\right)$. The combined extracts were evaporated and the residual oil chromatographed on silica gel ($1: 1$, EtOAcCHCl_{3}) to give 25a ($8.1 \mathrm{~g}, 59 \%$ from 11a) as an oil; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1740\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.84(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.06\left(1 \mathrm{H}\right.$, dd, $\left.J 11,9,3_{\mathrm{ax}}-\mathrm{H}\right), 2.22(1 \mathrm{H}, \mathrm{dd}, J$ $\left.11,2,3_{\mathrm{eq}}-\mathrm{H}\right), 2.30\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.65(4 \mathrm{H}, \mathrm{tt}, 5-\mathrm{H}$, $6-\mathrm{H}), 2.80-2.90(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.30,3.50(2 \mathrm{H}, \mathrm{dd}, J 16$, $\left.\mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.43\left(2 \mathrm{H}, \mathrm{d}, J 13, \mathrm{NCH}_{2} \mathrm{Ph}\right)$ and $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\mathrm{m} / \mathrm{z} 334(\mathrm{M})^{+}, 303(\mathrm{M}-\mathrm{OMe})^{+}, 275\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 247$ $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}, \quad 188 \quad\left(\mathrm{MeO}_{2} \mathrm{CCH}_{2} \mathrm{NH}=\mathrm{CHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 156(247-\mathrm{Bzl}), 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$(Found: $\mathrm{M}^{+}, 334.1904 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 334.1892).

Methyl 2-Methoxycarbonylethyl-4-(2-methoxyphenyl)piper-azin-1-ylacetate $\mathbf{2 5 b}$.-To a stirred mixture of the crude product 12 b , prepared from $11 \mathrm{~b}(3.08 \mathrm{~g}, 5.7 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.59 \mathrm{~g}, 11.5 \mathrm{mmol}$) in acetone ($90 \mathrm{~cm}^{3}$), was added dropwise methyl bromoacetate ($0.68 \mathrm{~cm}^{3}, 7.2 \mathrm{mmol}$). The reaction mixture was stirred at room temp. under N_{2} for 16 h . Work-up as described for 25a and chromatography of the residue on silica (gradient elution 1:10 to $1: 2$, EtOAc- CHCl_{3}) afforded 25b $\left(1.39 \mathrm{~g}, 69 \%\right.$ from 11b) as an oil; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1750\left(\mathrm{CO}_{2}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.86-2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.24-$ 2.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), 2.66-3.31 ($7 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, $6-\mathrm{H}), 3.31,3.59\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3,67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$, $2.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $6.80-7.10(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z 350(\mathrm{M})^{+}, 319(\mathrm{M}-\mathrm{OMe})^{+}, 263\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}$, $219\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)^{+}$and $150\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathrm{Me})-\right.$ $\left.\mathrm{N}=\mathrm{CH}_{2}\right]^{+}$(Found: $\mathrm{M}^{+}, 350.1834 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires M, 350.1841).

Methyl 2-Benzyloctahydro-7-oxo-2H-pyrido[1,2-a]pyrazine8 -carboxylate 27a.-To a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diisopropylamine ($2.14 \mathrm{~cm}^{3}, 15.2 \mathrm{mmol}$) in dry THF ($2 \mathrm{~cm}^{3}$) was added BuLi ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $9 \mathrm{~cm}^{3}, 14.5 \mathrm{mmol}$). After 20 min the solution was cooled to $-60^{\circ} \mathrm{C}$, followed by dropwise addition of $12 \mathrm{a}(2.43 \mathrm{~g}, 7.3 \mathrm{mmol})$ dissolved in dry THF $\left(10 \mathrm{~cm}^{3}\right)$. After being stirred at $-30^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with water, brought to pH 7 by addition of phosphate buffer and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was evaporated and the residue purified by flash chromatography (silica, 5:95 $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) to yield a mixture of 26a and 27a $(1.5 \mathrm{~g}, 68 \%)$. Rechromatography on a slower column (silica, $1: 1$, EtOAc-hexane) gave 27a as crystals (200 mg), m.p. $57-67^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 2810,2760\left(\mathrm{NCH}_{2}\right), 1740(\mathrm{CO})$, $1730\left(\mathrm{CO}_{2}\right)$ and 1670 and $1630(\mathrm{C}=\mathrm{C}-\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.92\left(1 \mathrm{H}, \mathrm{t}, J 10,1_{\mathrm{ax}}-\mathrm{H}\right), 2.05\left(1 \mathrm{H}, \mathrm{m}, 9_{\mathrm{a}}-\mathrm{H}\right), 2.13-2.45(4$ $\left.\mathrm{H}, \mathrm{m}, 3_{\mathrm{ax}}-\mathrm{H}, 4_{\mathrm{ax}}-\mathrm{H}, 9-\mathrm{H}\right), 2.83\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{6}_{\mathrm{ax}}-\mathrm{H}\right), 2.70-2.98$ (3 $\left.\mathrm{H}, \mathrm{m}, 3_{\mathrm{eq}}-\mathrm{H}, 4_{\mathrm{eq}}-\mathrm{H}, 1_{\mathrm{eq}}-\mathrm{H}\right), 3.37\left(1 \mathrm{H}, \mathrm{d}, J 17,6_{\mathrm{eq}}-\mathrm{H}\right), 3.51(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$ and $7.30(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z 302$ $(\mathrm{M})^{+}, 271(\mathrm{M}-\mathrm{OMe})^{+}, 270(\mathrm{M}-\mathrm{MeOH})^{+}, 243(\mathrm{M}-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 211(\mathrm{M}-\mathrm{Bzl})^{+}, 179(211-\mathrm{MeOH}), 146[\mathrm{Bzl}-$ $\left.\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 134\left[\mathrm{Bzl}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}, 91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)^{+}$ (Found: $\mathrm{M}^{+}, 302.1628 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 302.1628$).

Methyl Octahydro-2-(2-methoxyphenyl)-7-oxo-2H-pyrido-[1,2-a]pyrazine-8-carboxylate $\mathbf{2 7 b}$.-To a stirred and cooled
($0{ }^{\circ} \mathrm{C}$) solution of $\mathbf{1 2 b}(95 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added KH (35% in mineral oil; $71 \mathrm{mg}, 0.62 \mathrm{mmol}$). After the mixture had been stirred at $0^{\circ} \mathrm{C}$ for 5 h the excess hydride was destroyed by dropwise addition of MeOH . The mixture was distributed between cold phosphate buffer (pH 7) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a product consisting mainly of 27b (TLC, silica, 1:1 EtOAc-CHCl $\left.{ }_{3}, R_{\mathrm{f}} 0.5\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.37(1$ $\left.\mathrm{H}, \mathrm{d}, J 16,6_{\mathrm{ax}}-\mathrm{H}\right)$ and $3.52\left(1 \mathrm{H}, \mathrm{d}, J 16,6_{\mathrm{eq}}-\mathrm{H}\right) ; m / z 318[\mathrm{M}]^{+}$, $286(\mathrm{M}-\mathrm{MeOH})^{+}, 259\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}, 162\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{-}\right.$ $\left.\left(\mathrm{CH}_{2}=\mathrm{CH}\right) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$and $150 \quad\left[\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathrm{Me}) \mathrm{N}=\mathrm{CH}_{2}\right]^{+}$ (Found: $\mathrm{M}^{+}, 318.1567 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M, 318.1579$).

2-Benzylhexahydro-2H-pyrido[1,2-a] pyrazin-7(6H)-one 8a. -To a cooled ($-50^{\circ} \mathrm{C}$) solution of LDA, prepared at $0^{\circ} \mathrm{C}$ from diisopropylamine ($2.5 \mathrm{~cm}^{3}, 17.8 \mathrm{mmol}$) in dry THF (10 cm^{3}) and $\mathrm{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; $10 \mathrm{~cm}^{3}, 16.2 \mathrm{mmol}$), was added dropwise a solution of $25 \mathrm{a}(3 \mathrm{~g}, 9.0 \mathrm{mmol}$) in dry THF (10 cm^{3}) under an atmosphere of N_{2}. After being allowed to react at $50^{\circ} \mathrm{C}$ for 30 min , the mixture was acidified with $\mathrm{HCl}(2 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 30 \mathrm{~cm}^{3}$). The solution was concentrated under reduced pressure and the residue refluxed with $\mathrm{HC1}\left(6 \mathrm{~mol} \mathrm{dm}^{-3} ; 50\right.$ cm^{3}) for 4 h . After evaporation, the resulting product was dissolved in water ($20 \mathrm{~cm}^{3}$), and the solution was made alkaline with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were dried and evaporated. Column chromatography (silica, 5:95 $\mathrm{MeOH}-\mathrm{EtOAc}$) of the residue gave 8a ($935 \mathrm{mg}, 43 \%$) as an oil, identical (R_{f} value, spectral data) to the product described previously. ${ }^{5}$

Hexahydro-2-(2-methoxyphenyl)-2H-pyrido[1,2-a]pyrazin$7(6 \mathrm{H})$-one $\mathbf{8 b}$.-Reaction of $\mathbf{2 5 b}(95 \mathrm{mg}, 0.28 \mathrm{mmol})$ and KH was carried out as described for the preparation of 27b. After quenching with methanol, the reaction mixture was treated with $\mathrm{HCl}\left(6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ and the THF removed by extraction with ether. The aqueous phase was refluxed for 2 h . The solvent was evaporated and the residue partitioned between aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was evaporated and the residue was purified by preparative TLC (silica, EtOAc) to give 8 b (23 mg , 33%) as an oil, identical (R_{f} value, spectral data) with the product described previously. ${ }^{5}$

Acknowledgements

The authors are indebted to the F.K.F.O. and the 'Ministerie voor Wetenschapsbeleid' for financial support. One of them (S. Van den Branden) thanks the I.W.O.N.L. for a fellowship. The authors are also grateful to M. Vermeir, M. Ashty Saleh, R. De Boer and S. Toppet for technical assistance.

References

1 (a) L. S. Nazarova, A. P. Rodionov, A. M. Likhosherstov and A. P Skoldinov, Khim. Farm. Zh., 1980, 14, 8; (b) A. P. Skoldinov, K. S. Raevskii, A. M. Likhosherstov, A. V. Stavroskaya, C. Rueger, A. Rostock and H. Roehnert, Pharmazie, 1984, 39, 812; (c) A. M Likhosherstov, Z. P. Senova, A. V. Stavroskaya, A. V. Kaverina and A. P. Skoldinov, Khim. Farm. Zh., 1981, 15 (8), 55; (d) Jap. P. Appl. 61/53, 268 (1986) (Chem. Abstr., 1986, 105, 97175h).
2 (a) Jap. P. Appl. 83/127, 894, (1983) (Chem. Abstr., 1985, 102, 220900h); (b) Jap. P. Appl. 83/33, 98, (1985) (Chem. Abstr., 1986, 104 109495g); (c) L. Diafa, J. Couquelet, P. Tronche, D. Gardette and J.-C. Gramain, J. Heterocycl. Chem., 1990, 27, 2181.

3 P. Traxler, N. Vischer and O. Zak, Drugs Future, 1988, 13 (9), 845.
4 F. Compernolle, M. Ashty Saleh, S. Van den Branden, S. Toppet and G. Hoornaert, J. Org. Chem., 1991, 56, 2386.

5 F. Compernolle, M. Ashty Saleh, S. Toppet and G. Hoornaert, J. Org. Chem., 1991, 56, 5192.
6 PCT Int. Appl. WO 88 03, 138 (1988) (Chem. Abstr., 1989, 110, 8053e)
7 (a) M. Julia and J. Bagot, Bull. Soc. Chim., 1964, 1924; (b) S. Lartillot and C. Baron, Bull. Soc. Chim. Fr., 1966, 12, 3798.
8 E. Goldberg and K. C. Patel, J. Inorg. Nucl. Chem., 1972, 34, 3583.
9 G. E. Du Bois, G. A. Crosby and R. A. Stephenson, J. Med. Chem., 1981, 24, 427.

Paper 1/05567D
Received 1st November 1991
Accepted 13th December 1991

